Matrix Algebra
is a
Key Concepts
- Transpose
AT ofA :
AT=[aji] - Trace of
A :
nk=1akk (for an nn matrix A) - Identity Matrix
I :thenn matrix with 1's on the main digonal and 0's elsewhere. A+B andA−B :
A+B=[aij+bij] A−B=[aij−bij] - Scalar Multiplication:
cA=[caij] - Matrix Product
AB :(ij)th entry isnk=1aikbkj
(for anmn matrixA and annp matrixB ). - Inverse
A−1 ofA :A−1 satisfiesAA−1=A−1A=I .
IfA=a c b d ,
thenA−1=1ad−bcd −c −b a - Determinant
detA :IfA=a c b d ,detA=ad−bc .
In general,
along row i :
detA=ai1ci1(A)+ai2ci2(A)++aincin(A) .
along column j :
detA=a1jc1j(A)+a2jC2j(A)++anjcnj(A) .