Matrix Algebra































is a

Key Concepts
- Transpose
AT ofA :
AT=[aji] - Trace of
A :
nk=1akk (for an n
n matrix A)
- Identity Matrix
I :then matrix with 1's on the main digonal and 0's elsewhere.n
A+B andA−B :
A+B=[aij+bij] A−B=[aij−bij] - Scalar Multiplication:
cA=[caij] - Matrix Product
AB :(i entry isj)th
nk=1aikbkj
(for anm matrixn
A and ann matrixp
B ). - Inverse
A−1 ofA :A−1 satisfiesAA−1=A−1A=I .
IfA= ,a c b d
thenA−1=1ad−bc d −c −b a
- Determinant
detA :IfA= ,a c b d
detA=ad−bc .
In general,
along row i :
detA=ai1ci1(A)+ai2ci2(A)+ .+aincin(A)
along column j :
detA=a1jc1j(A)+a2jC2j(A)+ .+anjcnj(A)