Matrix Algebra
a11 a21 

am1 a12 a22 

am2 







a1n a2n 

amn
is a
nKey Concepts
- Transpose
AT ofA :
AT=[aji] 
- Trace of
A :
nk=1akk (for an n
n matrix A)
- Identity Matrix
I :then matrix with 1's on the main digonal and 0's elsewhere.
n A+B andA−B :
A+B=[aij+bij] A−B=[aij−bij] 
- Scalar Multiplication:
cA=[caij] 
- Matrix Product
AB :(i entry is
j)th
nk=1aikbkj
(for anm matrix
nA and ann matrix
pB ). - Inverse
A−1 ofA :A−1 satisfiesAA−1=A−1A=I .
IfA= ,
a c b d
thenA−1=1ad−bc
d −c −b a 
- Determinant
detA :IfA= ,
a c b d
detA=ad−bc .
In general,
along row i :
detA=ai1ci1(A)+ai2ci2(A)+ .

+aincin(A)
along column j :
detA=a1jc1j(A)+a2jC2j(A)+ .

+anjcnj(A)





