Select Menu

just study hard

just study hard

Ads

CMS Gallery

Powered by Blogger.

Technology

Shooting

Racing

News

» » » Matrix Algebra

Matrix Algebra

We review here some of the basic definitions and elementary 


algebraic operations on matrices. There are many applications 
as well as much interesting theory revolving around these concepts, 


which we encourage you to explore after reviewing 

this tutorial.
A matrix is simply a retangular array of numbers. For example,
A=      a11 a21  am1 a12 a22  am2     a1n a2n  amn        

is a mn matrix (m rows, n columns), where the entry in the ith row and jth column is aij. We often writeA=[aij].


Key Concepts

Let A=[aij] and B=[bij].
  • Transpose AT of A:
    AT=[aji]

  • Trace of A:
    nk=1akk (for an nn matrix A) 

  • Identity Matrix I:the nn matrix with 1's on the main digonal and 0's elsewhere.
  • A+B and AB:
    A+B=[aij+bij]
    AB=[aijbij]

  • Scalar Multiplication:
    cA=[caij]

  • Matrix Product AB:(ij)th entry is nk=1aikbkj 
    (for an mn matrix A and an np matrix B).
  • Inverse A1 of A:A1 satisfies AA1=A1A=I.
    If A=a c b d   ,
    then A1=1adbcd c b a   
  • Determinant detA:If A=a c b d   detA=adbc.
    In general,
     along row i:
     detA=ai1ci1(A)+ai2ci2(A)++aincin(A).
     along column j:
     detA=a1jc1j(A)+a2jC2j(A)++anjcnj(A).
Matrix Algebra, valiant cmsian, cms hyderabad

Matrix Algebra, valiant cmsian, cms hyderabad

Matrix Algebra, valiant cmsian, cms hyderabad

Matrix Algebra, valiant cmsian, cms hyderabad

Matrix Algebra, valiant cmsian, cms hyderabad

Matrix Algebra, valiant cmsian, cms hyderabad



About valiant cmsian

I believe there is no subsitute of study hard and i know its difficult to focus on studying but trust me its worth it. I browsed a lot of educational sites to collect each and every topic related with COURSE CONTENTS of BBA(HONS). Here is my all effort which i m sharing with the students of Business addministration. Hope it will help you in your study. DO NOT DEPEND ON CHEATING, JUST STUDY HARD.
«
Next
Newer Post
»
Previous
Older Post